资源类型

期刊论文 394

会议视频 7

年份

2024 1

2023 59

2022 47

2021 38

2020 38

2019 26

2018 23

2017 21

2016 17

2015 19

2014 15

2013 19

2012 9

2011 7

2010 6

2009 11

2008 7

2007 12

2006 1

2005 2

展开 ︾

关键词

电动汽车 3

2023全球十大工程成就 2

二氧化碳 2

吸附 2

固体氧化物燃料电池 2

带传动 2

快速充电 2

显微硬度 2

有色金属工业 2

电化学储能 2

重金属 2

重金属废水 2

2035 1

Deep metal mining 1

EDI 1

G蛋白偶联受体 1

Mitigation 1

Monitoring 1

NASICON 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 850-860 doi: 10.1007/s11783-014-0737-y

摘要: The effect of ion-doping on TiO nanotubes were investigated to obtain the optimal TiO nanotubes for the effective decomposition of humic acids (HA) through O /UV/ion-doped TiO process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag , Al , Cu , Fe , V , and Zn were doped into the TiO nanotubes, whereas such activities decreased as a result of Mn - and Ni -doping. In the presence of 1.0 at.% Fe -doped TiO nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min . Fe in TiO could increase the generation of ·OH, which could remove HA. However, Fe in water cannot function as a shallow trapping site for electrons or holes.

关键词: TiO2 nanotubes     ion-doping     humic acids     pseudo-first-order     mechanism    

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1243-1256 doi: 10.1007/s11705-020-2029-3

摘要: Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (>98%) and nearly 95% leaching efficiency of Li can be reached with LiNi Co Mn O . In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H to leach Li . This research is expected to provide new understanding for selectively recovering metal from secondary resources.

关键词: recycling     spent LIBs     selective recovery     hydrothermal treatment    

Visible light responsive photocatalysts developed by substitution with metal cations aiming at artificial

《能源前沿(英文)》 2021年 第15卷 第3期   页码 568-576 doi: 10.1007/s11708-021-0774-8

摘要: To solve resource, energy, and environmental issues, development of sustainable clean energy system is strongly required. In recent years, hydrogen has been paid much attention to as a clean energy. Solar hydrogen production by water splitting using a photocatalyst as artificial photosynthesis is a promising method to solve these issues. Efficient utilization of visible light comprised of solar light is essential for practical use. Three strategies, i.e., doping, control of valence band, and formation of solid solution are often utilized as the useful methods to develop visible light responsive photocatalysts. This mini-review introduces the recent work on visible-light-driven photocatalysts developed by substitution with metal cations of those strategies.

关键词: visible light responsive photocatalyst     water splitting     artificial photosynthesis: metal ion substitution    

Fluoride ions adsorption from water by CaCO enhanced Mn–Fe mixed metal oxides

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 236-248 doi: 10.1007/s11705-022-2193-8

摘要: Novel CaCO3-enhanced Mn–Fe mixed metal oxides (CMFC) were successfully prepared for the first time by a simple-green hydrothermal strategy without any surfactant or template combined with calcination process. These oxides were then employed as an adsorbent for adsorptive removal of excess fluoride ions. The adsorbent was characterized by SEM, XPS, XRD, FTIR, and BET analysis techniques. The adsorption property of CMFC toward fluoride ion was analyzed by batch experiments. In fact, CMFC exhibited adsorption capacity of 227.3 mg∙g‒1 toward fluoride ion. Results showed that ion exchange, electrostatic attraction and chemical adsorption were the main mechanism for the adhesion of large amount of fluoride ion on the CMFC surface, and the high adsorption capacity responded to the low pH of the adsorption system. When the fluoride ion concentration was increased from 20 to 200 mg∙L‒1, Langmuir model was more in line with experimental results. The change of fluoride ion adsorption with respect to time was accurately described by pseudo-second-order kinetics. After five cycles of use, the adsorbent still maintains a performance of 70.6% of efficiency, compared to the fresh adsorbent. Therefore, this material may act as a potential candidate for adsorbent with broad range of application prospects.

关键词: mesoporous materials     metal oxides     fluoride ion     adsorption mechanism    

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 838-854 doi: 10.1007/s11705-018-1746-3

摘要: Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

关键词: water splitting     structure engineering     metal organic framework     ion exchange     synergistic effect     hybrid structure     conductive supports    

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

《能源前沿(英文)》 2022年 第16卷 第5期   页码 706-733 doi: 10.1007/s11708-022-0833-9

摘要: Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

关键词: composite solid electrolytes     active filler/framework     ion conduction path     interphase compatibility     multilayer design    

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

《能源前沿(英文)》 2023年 第17卷 第5期   页码 569-584 doi: 10.1007/s11708-023-0875-7

摘要: Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

关键词: lithium (Li)-ion battery (LIB)     Li metal battery     three-dimensional (3D) composite Li metal anode     mechanical modification     reducing local current density    

Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metalion and dye adsorption from wastewater

Fengli Li, Chuang Chen, Yuda Wang, Wenpeng Li, Guoli Zhou, Haoqin Zhang, Jie Zhang, Jingtao Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 984-997 doi: 10.1007/s11705-020-2000-3

摘要: Nanofibers with high specific surface area and chemical stability have broad prospects in the applications of adsorption. However, the adsorption capacity is limited by the scarcity of adsorption groups and storage space. Herein, the activated carbon-hybridized and amine-modified nanofibers are prepared by integrating activated carbon (AC) and polyacrylonitrile (PAN) via electrospinning method and the subsequent amination, which could provide additional storage space and adsorption groups for ultrahigh adsorption capability. Thus, the obtained amine-rich porous PAN nanofibers (APAN/AC) readily realized the ultrahigh adsorption capacity for metal ions and dyes in wastewater. Specifically, the adsorption capacity of APAN/AC nanofibers were 284 mg·g for Cr(VI) and 248 mg·g for methyl orange, which were almost 2 and 4 times than that of amine-modified nanofibers (APAN) and carbon-hybridized nanofibers (PAN/AC), respectively. Moreover, the AC inhibited the chain mobility of polymer matrix and thereby endowing APAN/AC nanofibers with excellent recyclability. The adsorption capability retained 80% after nine adsorption-desorption cycles. The adsorption kinetics and corresponding mechanism were further explored. This strategy combines the advantages of polymer nanofibers and AC, opening a new avenue for developing next-generation absorbent materials.

关键词: carbon-hybridized and amine-modified nanofibers     polyacrylonitrile     metal ions and dyes     wastewater     adsorption kinetics    

photoluminescent carbon dots and its potential application as an efficient sensor probe for toxic lead(II) ion

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 536-547 doi: 10.1007/s11705-022-2239-y

摘要: The past decade has witnessed a variety of members of the carbon family along with exposure of carbon dots due to their magnificent properties in sensing, bioimaging, catalytic applications, biomedical fields, and so on. Herein, we report the simple hydrothermal method to fabricate photoluminescent doped carbon quantum dots for the detection of noxious lead(II) ions. Lead(II) ion is very venomous for both the environment and human health for which its detection is demanded area in the research field. The as-prepared carbon dots show excellent photostability, low toxicity and significant photoluminescence properties along with good water solubility. Along with these properties, carbon dots have a quantum yield of approximately 15%. In the practical field of application, these carbon dots have been used as sensing probes for the detection of lead(II) ions with a detection limit of 60 nmol·L–1. The fluorescence intensity of carbon dots was remarkably quenched in the presence of the lead(II) ion selectively among all the tested metal ions. Furthermore, we have studied the Stern–Volmer relationship for lead(II) quenching along with the explanation of the probable quenching mechanism. Ability of the doped carbon dots in heavy metal ions sensing in an environmental sample was demonstrated.

关键词: carbon dots     fluorescence     heavy metal sensing     practical application     photoluminescence    

废锂离子电池中有价金属回收的研究进展 Review

郑晓洪, 朱泽文, 林晓, 张懿, 何艺, 曹宏斌, 孙峙

《工程(英文)》 2018年 第4卷 第3期   页码 361-370 doi: 10.1016/j.eng.2018.05.018

摘要:

近年来,随着锂离子电池在消费电子产品和电动汽车领域应用的快速增长,导致了废旧锂离子电池的数量和重量呈现快速的增长。废旧锂离子电池中不仅含有有害的重金属,还含有有毒的化学物质,这些有害物质会对生态系统和人类健康构成严重的威胁。因此,从环境保护和经济方面考虑,高效地回收废旧锂离子电池受到了广泛的关注。本文综述了废锂离子电池中有价金属回收的工艺现状,介绍了锂离子电池的结构并总结了废锂离子电池回收技术。值得注意的是,预处理过程和金属提取过程在整个回收过程十分重要,其中金属提取过程主要采用的方法有火法冶金、湿法冶金、生物冶金及其他方法等。通过进一步比较不同回收方法,提出了目前废锂离子电池回收处理过程中主要存在的问题和未来的发展方向。

关键词: 废锂离子电池     有价金属     预处理     金属提取     产品制备     回收    

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 929-938 doi: 10.1007/s11783-015-0795-9

摘要: Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.

关键词: ion exchange     sorption     arsenic     perchlorate     fluoride    

Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling

Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 879-887 doi: 10.1007/s11783-014-0764-8

摘要: As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni >Cu >Co and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.

关键词: steel pickling waste liquor     nanoscale zero-valet metal     nanoscale zero-valent iron     humic acid     metal ion    

重金属废水处理技术概述

刘敏敏,于水利,侯立安

《中国工程科学》 2014年 第16卷 第7期   页码 100-105

摘要:

水体重金属污染正成为全世界最严重的环境问题之一,多种多样的技术已被用于重金属废水的处理。本文综述了近年来用于重金属废水处理的常见工艺,包括化学沉淀法、混凝-絮凝、电化学法、膜分离、离子交换法和吸附法等,并对相关工艺进行了评述。

关键词: 重金属废水     膜分离     离子交换     吸附    

新型通用离子交换膜的研究与实践

汪耀明,吴亮,徐铜文

《中国工程科学》 2014年 第16卷 第12期   页码 76-86

摘要:

基于离子交换膜的电膜技术,由于其独特的离子传递特性,可以进行离子物系的分离分级,在清洁生产、节能减排、环境保护、能量转换等方面有着广泛的应用前景。然而,目前国内相关均相离子膜产品尚处于起步阶段,以日本为首的国家对我国进行相关技术封锁和价格垄断。正是基于这样的产业背景和现实意义,开发出新型的均相离子膜制备路线尤为重要。本课题组提出了一种简单而通用的侧链型离子化芳香族聚合物的合成方法,即“离子单体聚酰基化”均相离子交换膜制备路线,并通过ATRP法来设计离子交换膜的主链憎水、侧链亲水的接枝结构,通过对接枝密度和接枝长度进行调节,实现对膜性能的调控,以满足不同的应用过程对膜性能的要求。此种均相离子交换膜的制备工艺及产业化生产攻关,可以打破以日本为首的国家对我国离子膜产品的技术封锁,实现具有我国自主知识产权的离子膜技术的产业化。制备条件温和、制备工艺简单、快捷,而且整个过程没有传统方法中常用的季铵化或磺化步骤,有效地简化工艺和降低环境污染,可用于扩散渗析、普通电渗析以及双极膜电渗析过程对高性能离子交换膜材料的需求。该系列离子交换膜在特种废水处理、有机酸生产、氨基酸分离纯化、重金属废水处理等诸多领域得到了广泛的使用,均取得了较为满意的使用效果。

关键词: 离子交换膜     电渗析     有机酸     氨基酸     重金属废水    

(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration

Wenlu Li, John D. Fortner

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1256-7

摘要: • The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. • Monolayer and bilayer surface coating structures are described. • Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr. Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase.

关键词: Superparamagnetic nanoparticles     Surface functionalization     Environmental sensing     Heavy metal ion sorption    

标题 作者 时间 类型 操作

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

期刊论文

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

期刊论文

Visible light responsive photocatalysts developed by substitution with metal cations aiming at artificial

期刊论文

Fluoride ions adsorption from water by CaCO enhanced Mn–Fe mixed metal oxides

期刊论文

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

期刊论文

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

期刊论文

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

期刊论文

Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metalion and dye adsorption from wastewater

Fengli Li, Chuang Chen, Yuda Wang, Wenpeng Li, Guoli Zhou, Haoqin Zhang, Jie Zhang, Jingtao Wang

期刊论文

photoluminescent carbon dots and its potential application as an efficient sensor probe for toxic lead(II) ion

期刊论文

废锂离子电池中有价金属回收的研究进展

郑晓洪, 朱泽文, 林晓, 张懿, 何艺, 曹宏斌, 孙峙

期刊论文

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

期刊论文

Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling

Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG

期刊论文

重金属废水处理技术概述

刘敏敏,于水利,侯立安

期刊论文

新型通用离子交换膜的研究与实践

汪耀明,吴亮,徐铜文

期刊论文

(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration

Wenlu Li, John D. Fortner

期刊论文